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Using the boundary-layer equations as a basis, the author considers
the propagation of plane jets of conducting fluid in a transverse
magnetic field (noninductive approximation),

The propagation of plane jets of conducting fluid is considered in
several studies [1~12]. In the first few studies jet flow in a nonuni~
form magnetic field is considered; here the field strength distribution
along the jet axis was chosen in order to obtain self-similar sclutions,
The solution to such a problem given a constant conductivity of the
medium is given in [1-3] for a free jet and in [4] for a semibounded
jet; reference [5] contains a solution to the problem of a free jet
allowing for the dependence of conductivity on temperature. Refer-
ences [6-8] attempt an exact solution to the problem of jet propaga-
tion in any magnetic field. An approximate solution to problems of
this type can be obtained by using the integral method. References
[9-10] contain the solution obtained by this method for a free jet
propagating in a uniform magnetic field.

The last study [10] also gives a comparison of the exact solution
obtained in [3] with the solution obtained by the integral method using
as an example the propagation of a jet in a nonuniform magnetic
field. Tt is shown that for scale values of the jet velocity and thick-
ness the integral method yields almost-exact values, In this study [10],
the propagation of a free jet is considered allowing for conduction
anisotropy. The solution to the problem of a free jet within the
asymptoiic boundary layer is obtained in [1] by applying the expan-
sion method to the small magnetic-interaction parameter. With this
method, the problem of a turbulent jet is considered in terms of the
Prandtl scheme. The Boussinesq formula for the turbulent-viscosity
coefficient is used in [12].

This study considers the dynamic and thermal problems involved
with a laminar free and semibounded jet within the asymptotic bound-
ary layer, propagating in a magnetic field with any distribution. A
system of ordinary differential equations and the integral condition
are obtained from the initial partial differential equations. The solu-~
tion of the derived equations is illustrated by the example of jet prop-
agation in a uniform magnetic field. A similar solution is obtained
‘for a turbulent free jet with the turbulent-exchange coefficient de-
fined by the Prandt! scheme,

1. Dynamic problem of laminar free jet. In the
noninductive approximation, the initial system of
equations of a laminar boundary layer for an incom=-
pressible conducting fluid has the form

du du u cB?
u—a—x—l—v@-—vayﬁ~—‘)—u, (1.1)
ou 9
= _|_._-ay =0, (1.2)
ar ar 0T sB? o,
u%-l—vw—a—a-?--FTu. (1.3)

In the first case we consider the dynamic problem
of a plane free jet propagating in a transverse mag-
netic field (Fig. 1a). Here the solution to Egs. (1.1)
and (1.2) should obey the boundary conditions

%‘:0, v=0 for y=0 u=0 for y=4 .

We shall seek a self-similar solution to this problem.
To do this we use the following form of the solution:

= U F (@), y =38 (2) 0. (1.4)

Here uyy = Uy (x) is the maximum velocity and 6 =
= §(x) is proportional to the relative jet width.

Substituting the expressions for the velocity com-
ponents u and v and their derivatives into equation of
motion (1.1), we obtain, after some transformations,

— FF" 4 780 (F"— FF") =

e S w (1.5)

1 Fw/ cB? 8 FI

with boundary conditions

F=0, F'=1, F'=0 for ¢=0,
F' =0 for(pzioo

(the primes denote differentiation of the functions
F(¢) with respect to ¢ and of the functions um(x) and
4(x) with respect to xv). ‘

In order to solve Eq. (1.5) it is first necessary to
find the functions uy,(x) and 6(x). Reference [8] gives
the relationship umy ~ x5~ 2 as one of the equations for
finding the unknowns. In [6, 7], all three quantities in
Eqg. (1.5) which are functions of x (arbitrarily gj(x),
i=1,2,3) are sought in the form

g; = const -+ p; (%)

where the functions pj(x) are assumed to be propor-
tional. Moreover, Eq. (1.5) is divided into two in-
dependent equations which are integrated. In our opin-
ion, such methods are artificial.

Nevertheless, to find the functions um(x) and 6(x)
we can obtain equations directly from the initial
system. To do this we integrate Eq. (1.5) over the jet
cross section (from —w to +«). Here we obtain

Uy 8

L2520 AN 20 =0,

_oB  _Fe (g
N=2E, a=2Z, a §F @)de. (1.6)

Allowing for (1.6), we rewrite Eq. (1.5) as
1 Flll + _1_(FFI! + FIZ) J—
Uy 86 2 -
6 7 A‘ r "

=N uma,[F — L (Fr—FF )]. (1.7)

Separation of variables in this equation can be done
for N6 /umé' = const. This condition can be realized
by profiling the external magnetic fields [1-3]. In
order to obtain the self-similar solution we should
assume the coefficient of F" is constant for any mag-
netic field distribution. In particular, we can set

Uy 88" = 4. (1.8)
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Here, Eq. (1.7) becomes
F" 4 2(FFYy = 4N 2o [P — L (@ —FF)]. (1.9)
- Umd’ l_ Pl 4 -

As was noted in [2], when the factor in front of the
brackets is constant, the expression for F' satisfies
this equation for pure hydrodynamic flow:

F’ = sch?p. (1.10)

We can verify that this expression is also a solu-
tion of Eq. (1.9) for any magnetic—-field distribution.

The maximum value for the jet width and velocity is
determined by Egs. (1.6) and (1.8); these equations
are written as

208" + 8% — Yyg NOO' = 0, up, = 4/65".  (L.11)

In the general case of any magnetic-field distribu-
tion (N = N(x)), the given system of equations does not
vield to integration in quadratures. However, this can
be realized for a uniform magnetic field. We shall
therefore restrict ourselves to the solution of this
problem for constant N.

Integrating Eq. (1.11)for the boundary condition &0)=
= ( we obtain the following expressions for the un-
knowns:

5 .
VCav= OS Véexp (-— %1—;,— 62) s,
(1.12)

In order to find the integration constant C we must
obtain the integral condition. To do this we integrate
Eq. (1.1), first over the jet cross section and then in
the longitudinal direction. We then obtain the sought
conservation condition

OSO uidy + § <N DSO udy)d:c =
—co 0 —~o0

(1o = §wdy for o=0), (1.13)
where I is the value of the momentum at the jet
source. As is usual in the theory of jet sources, the
initial value for the momentum is assumed to be
known.

Fig. 1

With the above solution, the integral conservation
condition (1.13) yields

Shom(—Fro)ranls .

0

(1.14)

By evaluating the integral we find that C = 64/31,.

Thus, relationship (1.13) for the propagation of a
jet of conducting fluid in a magnetic field will be an
integral condition, similar to the condition for the
conservation of momentum of a pure hydrodynamic
jet. In the limiting case, as x — 0, expression (2.13)
determines the initial jet momentum, while as N — ¢
this expression becomes the momentum conservation
condition

o
S u?dy = Iy = const .
—C0

In [7, 8] it was this limit relationship in particular
that was used to determine the constant of integration
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Fig. 2
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for the propagation of a jet of conducting fluid; this
relationship, however, is valid only for ordinary hy-
drodynamic flow. In [6], the constant of integration,
in general, could not be found.

The conservation condition (1.13) exists when the magnetic-field
strength at some point along the jet flow (for x = 0) is finite, In the

‘case in which the external magnetic field does not satisfy this condi-

tion we can find other integral conditions allowing us to obtain a final
solution, For example, when seeking solutions in powers of the mag-
netic field B ~x"%(a >0) we can use an integral condition of form [1

00
g u®dy = const ,
-0

where the constant & is chosen so that the value of the integral is con~
stant throughout the region of jet propagation. That the derived inte~-
gral condition does not follow from the differential equations of mo-
tion is a consequence of the self-similar power wansformations. In
contrast, generalized integral condition (1.13) does follow from the
initial differential equations and is therefore an existence condition
for a nontrivial solution which is applicable for any form of solution
with an everywhere-finite magnetic field strength.

We shall analyze the obtained solution. For this purpose we re-
write the expressions for the velocity components, jet thickness, and
the integral quantities in a form independent of the parameter N:

1
T* = g V 6* exp (— 6*2)do*,  y * == exp (— 5%?) ,
5 "oV

o L@t
=TT Y (o0) == 5w ., G*=mngG,
u, = mu, 8% = n§, a*=pzx,
4 2\ 1t o /3N
m == m (T) ’ n = _4" ‘,/ T y

(1.15)
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Figure 2 shows the change in these quantities along the jet. The
effect of body forces leads to an increase in the relative width of the
jet o and to a more rapid decrease in velocity um in comparison with
ordinary fiow. Jet momentum I decreases along the x-axis, As the
distance from the source increases, the jet flow rate

G=§°udy

-0

passes through an extremum for x # 0.21p corresponding to § = 1/2.
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Fig. 3

At this point, the transverse velocity component z also changes sign.
Thus, a decrease in flow rate is associated with fluid flow into the
environment. Figure 3 shows the pattern of the streamline ¢*. For

N # 0 jet growth terminates at some finite distance from the jet source
x #~ 0.603p. In our opinion, this physically unrealizable result is as-
sociated with the continuation of the obtained solutions into a region
in which flow cannot be described by the boundary-layer equations.
In fact, for small flow rates and large jet thicknesses the fransverse
velocity becomes commensurate with the longitudinal component.
Therefore, the initial boundary-layer equations constructed for small
v/u are no longer applicable.

Thus, the obtained solution to the problem of a free jet propagat-
ing in a magpetic field is applicable everywhere except the jet mouth
(x = 0) and regions distant from it. The latter is due to the effects of
the magnetic field on flow. These features of the obtained solution
are similar to the properties of the Blasius solution for uniform flow
around a finite plate; here, the solution is applicable everywhere ex-
cept at the leading and trailing edges of the plate.

2. Thermal problem of free laminar jets. Con-
sider the thermal problem for two types of boundary
conditions: a) symmetric; and b) asymmetric.

a) To solve the problem for symmetric boundary

conditions
aT/oy =0 fory=0,

T=Ts for y=4 o (2.1)

we assume
AT r—T, .
Afm T —T'm—e(‘P)'

m

(2.2)

In order to find the function 8(g) we convert the heat
propagation equation (1.3) to an ordinary differential
equation:

e e

ATm’G Fle +

—_ Nupy [ 3
ATpd 7,8 F2=0

A (2.3)

with boundary conditions

=1, 00=0 for ¢=0, 0=0 forg=+o.

It is clear from Eq. (2.1) that in this case there is
no self-similar temperature distribution. The tem-
perature distribution in each section can only be ob-

tained by numerically integrating (2.3) for correspond-
ing uy,, 6, and AT.

To find AT,,, assuming that the jet is "hotter" than
the environment by an amount

feo]

0 = § cuaTay for =0

-0

we obtain the following integral equation from the tem-
perature equation (1.3) allowing for the boundary con-
ditions

AT, =%SNum26dx+ —g-, B ={ Fody.
o Q

From the expression for the excess temperature
AT at the jet axis obtained from (2.4),

AT, = Bl? - +%(SNum’6da:) 1871 (2.5)
(]

It is clear that Joule dissipation leads to jet heating;
this increases with an increase in the magnetic-inter-
action parameter.

b) For asymmetric conditions

=T2
T=T,

for y = — o0,
+o0. (2.6)

I

for y

In order to determine the dimensionless excess tem-
perature profile

AT _ T—Tx __
ATy T Th—T: =8 (2.7)
we obtain the equation
o (14 220 ) P N pEc F1=0  (2.8)
4p u, AT - :

with boundary conditions
6=1 for ¢=+4 o0, 6=0 for g=—, (2.9)

whose solution has the form

B() = 1+ No: (+ 00)] g 0 — NOa (),

Y

8 (¢) =§exp (—mPSFd(p)d(p,
0 1]

o =41+ 2m2),

g
u &

w s 6% K
6 (9) = 4Pr$la—'§<§ﬁ"2exl’ (oP ) dg) do)>

X exp (—mP§chp)dcp. (2.10)
0

The temperature distribution will also not be self-
similar in this case since integration is carried out
for a parametric equation in terms depending on x.
Instead of a monotonic temperature distribution,
characteristic of pure hydrodynamic flow, Joule dis-
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sipation in this case leads to the appearance of an ex-
tremum in the temperature profile which is close to

the jet axis. Figure 4 shows the qualitative dependence

of the temperature distribution on the magnetic-inter ~
action parameter.

3. Dynamic problem of a turbulent free jet. We
present a similar solution to the dynamic problem for
a turbulent free jet. The turbulent viscosity coeffi~
cient is found from the so-called new Prandtl equation

vr = %8uy, . (3.1)
From the initial system

Bu Bu___v B32u cB?
btV =i T

u 8y
we obtain the following equations for determining
Uy (x) and 6(x):

14 2zu, fu, + ANzfu, =0, 8 =4n. (3.3)

As for pure hydrodynamic flow, the dimensionless
velocity profile in a turbulent jet coincides with the
velocity profile of a laminar jet (1.10).

Upon integrating (3.3) for the boundary condition
8(0) = 0 and using the integral equation (1.13) we ob-
tain

Uy = C] VE— 1/;;).1\’:5’ 8 = 4nx,

C =", V3lyx. (3.4)

Figure 5 shows the change in maximum velocity um/ugalong the
jet axis, where uy = c/(x)ll2 is the value of the velocity at N = 0,

The derived solution has one important drawback for any finite
value of the parameter N: the velocity, beginning with some point,
passes through zero and then becomes negative. This physically im-
possible result evidently indicates that the solutions in a laminar jet
are not applicable at finite distances from the jet mouth. Naturally,
the application of the Prandtl scheme for turbulent sweamline flow in
a magnetic field requires experimental verification.

4. Dynamic problem of a semibounded laminar jet.
For jet propagation at the wall (Fig. 1b) the boundary
conditions take the form

u=0, v=0 fory=0; u=0 for y=+oc.
By converting the self-similarity condition

u =umF(q))i y:é(x)q)

used above, we reduce Eqgs. (1.1) and (1.2) to the fol-
lowing system of ordinary differential equations:

3NS

5
umﬁ

F” 4 FF" 4 2F =

[F' — s FF")] , (4.1)

um’ﬁ &
v =\ £y, (4.3)

]

undd =3,  (4.2)

g:_—y

For a uniform magnetic field (N = const) the solu-
tion to (4.2) and (4.3) for boundary condition 6(0) = 0
has the form

Chyy = E]B/Eexp (——1—;’85 62) a6,
P .

tn = e - 03D (— 2. 8%), (4.4)

v &

The integration constant C, defined by the integral
condition

oo Y x . v
§u2<§ wdy)dy + §N[§ ”(§ “ d?/)dy]dx = Ey, (4.5)
is given by

c =2 <Eo=§u2(§udy>dy for x:—_O).
0

B
0

Thus, as for the problem of a free jet, the equations for finding
ty and & are only integrated for a uniform magnetic field, Here the
obtained solutions for a semibounded jet have features similar to
those of the solution to the problem of a free jet. Integration of the
equations for finding the velocity profile (4.1) can only be carried
out using the local-similarity method, i.e., by simultaneously solv-
ing (4.1)=(4.3). In this case, therefore, the velocity profiles will not
be self-similar. Self-similar velocity profiles can only be obtained by
choosing particular values for the external magnetic field whose form
is given by the condition 3N&/uy8" = const. Given this value for the
induction, the field must attenuate in inverse proportion to the rela-
tive jet width B = LBy/8. Here Eqs. (4.1)-(4.3) diverge. Numerical
integration of the equation

Fii/_}__l?‘Fn +2F'g:ﬁ3 [F’—*E;(F'Z——FF”)T’,

— s (Bel)?
N = __LLLL (4_6)
Ul
is performed in [4]. Equations (4¢.2) and (4.3) have the solutions
i 12—N
= T‘,‘E 3 2~{6+N)/(12-N) , 5= Glxel(m"N)' (4.7)

In this case there is no integral condition (4.5). This is due to the
distribution of the external magnetic field in the jet source: the body
force becomes infinitely large for x = 0. Therefore, the integration
constant C; is found from the integral condition used in [3, 4]:

o

3 9HN-12) - 3 ~1(V+6)/(N~12)
Cl:(-.—__-12-—~N ) [D<SF9/(6rN)d(p> ]

1]

’

co
D= S u¥+V) gy const. {4.8)
¢

The derived relationships in (4.7) differ from the solution obtained
in {4] since in the latter case the solution is sought in the form of a
power series. However, the characteristics of the solutionin [4]are also
valid for this case. In particular, this applies to values of N limited to
0 = N <12 where there are self -similar solutions: the values for N are
obtained from the condition that the jet flow rate increases along the
axis,

From expression (4.7) it is clear that an increase in body force
leads to an increase in the relative width of the jet and a decrease in
its maximum velocity.

5. Minimum problem of semibounded jet. We shall
restrict ourselves to a solution to the problem of g

jet propagating along a wall with a fixed temperature:

I'=T, fory=0, T="Ts for y=oo. (5.1)

Assuming that

AT _ T—T,
T, s = @), (5.2)
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we replace Eq. (2.3) by

Fr=0  (5.3)

)FG’—{-NAT -

1 v
w8+ (13
with boundary conditions
6=1 for ¢=0, 9=0 for g=o0,

whose solution has the form

0(q) = 1 — [1 — N8y (c0)] T — Ny (9),

61 (@) = iexp (—mP§ F dg) do,

[]

m(x)=3(1+%—':§,->;
5 P P P

0.(9) = 3Pz S(SF'zexp(mpgﬁdm)d@)x
0 1]

X exp <-mP§qu>)dcp. (5.4)

0

From the expression for the local value of the

Nusselt number
z 4 — NOj (oo}

[ Z Y NUalo0)
Nog = 8  Oi(ec) 7

Ne=sap, 7= —h g (5.5)
we can estimate the thermal fluxes appearing in the
jet as a result of Joule dissipation. It is clear from
formula (5.5) that the thermal flux due to Joule dis-
sipation increases with an increase in N. Here the
decelerating effect of the magnetic field on jet motion
leads to a more uniform temperature distribution
near the wall.

Qualitatively, the temperature profiles are represented by the
curves in Fig, 6,

Note in conclusion that all of the above- derlved results reduce to
the corresponding solutions for pure hydrodynamic flow in the absence
of a magnetic field (N = 0),
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